DNA Fragment Assembly Using Multi-Objective Genetic Algorithms

نویسندگان

  • Manisha Rathee
  • T. V. Vijay Kumar
چکیده

DNA Fragment Assembly Problem (FAP) is concerned with the reconstruction of the target DNA, using the several hundreds (or thousands) of sequenced fragments, by identifying the right order and orientation of each fragment in the layout. Several algorithms have been proposed for solving FAP. Most of these have solely dwelt on the single objective of maximizing the sum of the overlaps between adjacent fragments in order to optimize the fragment layout. This paper aims to formulate this FAP as a bi-objective optimization problem, with the two objectives being the maximization of the overlap between the adjacent fragments and the minimization of the overlap between the distant fragments. Moreover, since there is greater desirability for having lesser number of contigs, FAP becomes a tri-objective optimization problem where the minimization of the number of contigs becomes the additional objective. These problems were solved using the multi-objective genetic algorithm NSGA-II. The experimental results show that the NSGA-II-based Bi-Objective Fragment Assembly Algorithm (BOFAA) and the Tri-Objective Fragment Assembly Algorithm (TOFAA) are able to produce better quality layouts than those generated by the GA-based Single Objective Fragment Assembly Algorithm (SOFAA). Further, the layouts produced by TOFAA are also comparatively better than those produced using BOFAA. DNA Fragment Assembly Using Multi-Objective Genetic Algorithms

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multi-objective genetic algorithm (MOGA) for hybrid flow shop scheduling problem with assembly operation

Scheduling for a two-stage production system is one of the most common problems in production management. In this production system, a number of products are produced and each product is assembled from a set of parts. The parts are produced in the first stage that is a fabrication stage and then they are assembled in the second stage that usually is an assembly stage. In this article, the first...

متن کامل

A cost-oriented model for multi-manned assembly line balancing problem

In many real world assembly line systems which the work-piece is of large size more than one worker work on the same work-piece in each station. This type of assembly line is called multi-manned assembly line (MAL). In the classical multi-manned assembly line balancing problem (MALBP) the objective is to minimize the manpower needed to manufacture one product unit. Apart from the manpower, othe...

متن کامل

A multi-objective genetic algorithm for a mixed-model assembly U-line balancing type-I problem considering human-related issues, training, and learning

Mixed-model assembly lines are increasingly accepted in many industrial environments to meet the growing trend of greater product variability, diversification of customer demands, and shorter life cycles. In this research, a new mathematical model is presented considering balancing a mixed-model U-line and human-related issues, simultaneously. The objective function consists of two separate com...

متن کامل

AERO-THERMODYNAMIC OPTIMIZATION OF TURBOPROP ENGINES USING MULTI-OBJECTIVE GENETIC ALGORITHMS

In this paper multi-objective genetic algorithms were employed for Pareto approach optimization of turboprop engines. The considered objective functions are used to maximize the specific thrust, propulsive efficiency, thermal efficiency, propeller efficiency and minimize the thrust specific fuel consumption. These objectives are usually conflicting with each other. The design variables consist ...

متن کامل

A Multi-objective Mixed Model Two-sided Assembly Line Sequencing Problem in a Make –To- Order Environment with Customer Order Prioritization

Mixed model two-sided assembly lines (MM2SAL) are applied to assemble large product models, which is produced in high-volume. So, the sequence planning of products to reduce cost and increase productivity in this kind of lines is imperative. The presented problem is tackled in two steps. In step 1, a framework is developed to select and prioritize customer orders under the finite capacity of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJAEC

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014